
Camille Bell

camillescareer@yahoo.com

© Camille Palmer Bell, 2009

Why industry and government is
switching to Agile software

development.

Some Comparison Examples:

© Camille Palmer Bell, 2009 2

•  Value

•  Timeliness

•  Needs Met

•  Simple, Solid, Bug Free

•  Happy Developers

•  Happy Customer

What We Want From Plan Driven
Development

© Camille Palmer Bell, 2009 3

•  Cost Overruns

•  Schedule Overruns

•  Wrong & Missed Requirements

•  Buggy, Complex SW

•  Death Marched Delivery Team Looking for
Other Jobs

•  Ticked Customer, COTR and Lawyers
Looking for New Delivery Team

What We Get Instead

© Camille Palmer Bell, 2009 4

Detailed
Design

Require-
ments

Top Level
Design

Coding

Test

Plan

Deploy

Traditional Plan Driven Development
Doesn’t Embrace Change

Because it doesn’t adapt to change; it fails.

© Camille Palmer Bell, 2009 5

Large Projects Fail

•  Large projects diminish productivity

– Beyond 25 person months for a given
software project, productivity was
reduced equally per person (e.g., 250
months reduced productivity 10x)

– Optimal project size appears to be about
8.3 people for 3 months

© Camille Palmer Bell, 2009 6 Ref: Standish Group Reports

Large Projects Fail

•  Large projects diminish chance of success

–  Projects with less than $750K had a 55%
success rate

–  $5 – 10 Million projects had an 8% success rate

–  Over $10 million had less than ½% success rate

© Camille Palmer Bell, 2009 7 Ref: Standish Group Reports

Statewide Automated Child
Welfare Information System

State of
Florida

8 years

$32 million

15 years

$230 million

State of
Minnesota

NA

NA

1 year

$1.1 million

Initial

Initial

Final

Final

200:1 difference - same Federal mandate

Source: Lean Software Development: An Agile Toolkit © Camille Palmer Bell, 2009 8

1.  They would spend two to three months in meetings, aligning all
opinions in order to create a huge requirements document;

2.  When they finally started developing the systems the business
team had disappeared and in most cases forgotten about the
project;

3.  By the time the project was ready to be tested the key users
had changed, the business had changed and the project
delivery team immediately entered into a lengthy negotiation
phase to reconcile what was delivered versus what the
business really needed.

Italian Firm Before CIO Mandate and Agile Practices

Source: Mike Jones, Driving Agile Success - A CIO's Mandate
© Camille Palmer Bell, 2009 9

Source: Mike Jones, Driving Agile Success - A CIO's Mandate
© Camille Palmer Bell, 2009 10

1.  The business team is more motivated and involved as they are able to
see how the projects are progressing on a regular basis;

2.  The business gets to be more responsible for the decisions that shape
the project direction because they see and constantly test the
application;

3.  The business and IT avoid the costly, wasteful exercise of building
complex requirements documents because they now fully realize that
they can never document every detail in a specification;

4.  From very early on in the project, IT can see if the project is really
what the company needs and identify any mismatches quickly to
reduce the amount of time, dollars and resources that might be
wasted

5.  Even for big projects, Agile methodology is used - and forces the team
to split the project into phases. This exercise divides the scope into
smaller, manageable projects with incremental releases and
decreased risk.

Italian Firm After CIO Mandate and Agile Practices

Source: Mike Jones, Driving Agile Success - A CIO's Mandate © Camille Palmer Bell, 2009 11

Some Personal Experience with CMM/CMMI
On Joint Tactical Radio System

•  Worst performing JTRS Cluster 1 Team
(responsible for stop work order) was CMM
Level 5 following strict Waterfall practices

•  Best performing JTRS Cluster 1 Team (able
to debug HW before it was built) was CMM
Level 5 following rigorous Agile practices

CMM/CMMI process itself and certification adds
paperwork and cost not value.

© Camille Palmer Bell, 2009 12

General Characteristics of Agile
Processes

© Camille Palmer Bell, 2009 13

The Agile Manifesto

“We are uncovering better ways of developing
software by doing it and helping others do it.
Through this work we have come to value:

–  Individuals and interactions over processes and tools

–  Working software over comprehensive documentation

–  Customer collaboration over contract negotiation

–  Responding to change over following a plan

That is, while there is value in the items on the right,
we value the items on the left more.”

Ref: www.agilemanifesto.org/
© Camille Palmer Bell, 2009 14

Paradigm Shift

Ref: Adapted from Dynamic Systems Development Method

Cost

Cost

Schedule

Schedule Requirements

User Stories

Constraints

Estimates

Plan
Driven

Business Value
Driven

 Agile Waterfall

The Plan creates cost/schedule estimates The Vision creates User Story estimates

© Camille Palmer Bell, 2009 15

Only Implement the Best Value

Ref: Standish Group Reports

20%

Best
Value

64%

Waste

© Camille Palmer Bell, 2009 16

Common Agile Process Features
•  User Stories

–  byte sized end-to-end customer functionality

•  Very Short Iterations
–  1 or 2 weeks

•  No Changes in Priorities During Iteration
•  Daily Meetings of a Few Minutes

•  Demo Working SW Every Iteration
•  Review & Retrospectives Every Iteration
•  Development Team Organizes Own Work

•  Management Facilitates & Removes Obstacles
© Camille Palmer Bell, 2009 17

After User
Story Added

Notify

Notify

After
Reprioritizing

Before User
Story Added

User Stories Are Implemented
By Business Priority

Prioritized Backlog of User Stories for later iterations
© Camille Palmer Bell, 2009 18

(cold) (hot)

Richness (“temperature”) of communication channel

C
om

m
un

ic
at

io
n

ef
fe

ct
iv

en
es

s

Paper
Audio tape

Video tape 2 people
on e-mail

2 people
on phone

2 people at
whiteboard

Improving Individual Interactions &
Customer Collaboration

Source: Alistair Cockburn © Camille Palmer Bell, 2009 19

Smaller Teams Reduce
Communications Channels

5 Person Team 8 Person Team

Imagine a 20 person team !

© Camille Palmer Bell, 2009 20

Agile Balance of Power

Customers
Business Decisions:

  Dates
  Scope
  Priority

Developers

Technical Decisions:

  Estimates

Together both ensure the highest priority
scope is ready by the release date.

© Camille Palmer Bell, 2009 21

Automate Repeatable Tasks

  Compilation
  Simple Refactoring
  Testing
  Configuration & Archival
  Build
  Continuous Integration
  Deployment

© Camille Palmer Bell, 2009 22

Some Key Features of Leading
Agile Processes

•  Lean

•  Scrum

•  eXtreme Programming

© Camille Palmer Bell, 2009 23

Lean Principles

1.  Eliminate Waste

2.  Build Integrity In

3.  Create Knowledge

4.  Defer Commitment

5.  Deliver As Fast As Possible

6.  Respect People

7.  Optimize the Whole

Source: Lean Software Development: An Agile Toolkit © Camille Palmer Bell, 2009 24

Lean’s 7 Wastes in SW
Development

•  Partially Done Work

•  Extra Features

•  Relearning

•  Task Switching

•  Handoffs

•  Delays

•  Defects

Source: Lean Software Development: An Agile Toolkit © Camille Palmer Bell, 2009 25

Request
Approve

&
Prioritize

Technical
Assessment

Code
&

Test

Verify
&

Fix
Deploy To

Verification
To

Operations

Form
sent to
Queue

Form
sent to
Queue

Form
sent to
Queue

Weekly
Review

Wait for
Architect

Wait for
Developers

15 m ½ w

5 m

2 w

15 m 2 m

2 w

3 h 45 m 1 w

2 h 3 m 15 m

6 w + 4 h

Biweekly Release

½ w
2 h + 40 m

1%
Efficiency

Lean Value Stream Mapping Example:
Most Inefficient

Source: Lean Software Development: An Agile Toolkit © Camille Palmer Bell, 2009 26

Request
Approve

&
Prioritize

Technical
Assessment

Code
&

Test

Verify
&

Fix
Deploy To

Verification
To

Operations

E-mail
Tech Lead

E-mail
Supervisor

Assign
Developer

2 h

5 m

2 h

15 m 2 m

1 h

2 h 3 m 15 m

325 m

Developer available

10 m
160 m

33%
Efficiency

15 m

Lean Value Stream Mapping Example:
Better Efficiency

Source: Lean Software Development: An Agile Toolkit © Camille Palmer Bell, 2009 27

Scrum Roles

•  Product Owner/Customer
•  Coach Facilitator – Scrum Master
•  Delivery Team

–  Developers
–  Testers
–  Tech Writers
–  Usability Engineers
–  Systems Engineers
–  Architects

© Camille Palmer Bell, 2009 28

Scrum Delivery Team

•  Typically 5 to 10 people

•  Cross functional
–  Testers, Programmers, Business Analyst

•  Members should be full-time
–  May be exceptions (tech writers, DBA)

•  Teams are self-organizing
–  It assumes responsibility for planning its own work

© Camille Palmer Bell, 2009 29

Example Burn down Chart
 Day 5 – Projected Finish Date

R
o
o
m
s

Days

5

10

15

21 28 14 7

Movers Arrive
Example: Alistair Cockburn © Camille Palmer Bell, 2009 30

XP Practices

© Camille Palmer Bell, 2009 31

3 Rules of Test Driven Development

1.  You are not allowed to write any production code
 unless it is to make a failing unit test pass.

2.  You are not allowed to write any more of a unit test
 than is sufficient to fail; and compilation failures are
 failures.

3.  You are not allowed to write any more production
 code than is sufficient to pass the one failing unit
 test.

With tests you are in control; without tests you aren’t!

Bob Martin - The Three Rules of TDD © Camille Palmer Bell, 2009 32

The Test Driven Development Cycle

Write a failing test
for new functionality

Write just enough
code to pass test

Refactored code
must also pass tests,
no new functionality

© Camille Palmer Bell, 2009 33

Key Target Audience to Whom Each
Process Most Appeals

Lean

Scrum

eXtreme Programming

•  CXO’s, large companies,
other’s familiar with Lean
Manufacturing

•  1st, 2nd and sometimes 3rd
tier management, medium &
small companies, those keen
on certifications

•  Technical staff, small
companies, those with
constant access to
customers

© Camille Palmer Bell, 2009 34

Why Process is Attractive to Audience

Lean

Scrum

eXtreme
Programming

•  Toyota’s track record with Lean, focus on
value stream & waste elimination, solves
large enterprise problems, includes SW
engineering, Kanban answers when done

•  Quickest to implement, usually ignores
engineering practices, easy certification,
burn down answers when done

•  Rigorous focus on engineering practices,
closest to customers, velocity answers
how much can be done

© Camille Palmer Bell, 2009 35

Lean

Scrum

eXtreme
Programming

•  Requires CEO level buy-in corporate wide,
top down implementation can cause
resentment in lower level staff

•  Clueless teams don’t self organize well,
without engineering practices productivity
and quality improvements stall out,
enterprise level impediments difficult to
remove in large companies

•  Process name, more change than Scrum,
engineering focus confuses management,
customer participation levels daunting,
technical rigor requires lots of practice

Key Challenges of Each Process

© Camille Palmer Bell, 2009 36

General Challenges in Adopting Agility

•  Contracts and Profit Models
–  Contracts need to be flexible and short

•  Buy/sell a set number of iterations (sprints)
•  Time box and money box contracts
•  No requirements laundry lists,

–  Hold user story workshop for initial requirements
–  Allow customer to reprioritize each iteration
–  Only focus on highest priority user stories

•  Cancel the contract early, if not performing

–  Contracts process needs to be faster
•  Slow and costly government contract process keeps the best

companies from bidding
•  Short, low dollar value process grows bidder pool

© Camille Palmer Bell, 2009 37

General Challenges in Adopting Agility

•  Contracts and Profit Models (continued)
–  Contract managers need to abandon command and

control
•  Instead facilitate to ensure removal of roadblocks to direct

customer-developer collaboration

–  Companies need incentives to provide fewer high
quality developers instead of many low quality
developers

•  Profit model based on bottoms in seats has to change

–  Good agile companies rewarded by more more
contracts not contract extension because deadline
unmet

© Camille Palmer Bell, 2009 38

General Challenges in Adopting Agility

•  Customer Interaction
–  Real end user customers (or as close as possible)

are essential

–  Customers need to interact with development
teams /wo intermediaries

–  Customers must prioritize their requirements as
small end-to-end user stories and reprioritize
frequently

–  Customers should expect, attend and provide
feedback of demos of working software

© Camille Palmer Bell, 2009 39

General Challenges in Adopting Agility

•  Management Resistance
–  Management needs to abandon command and

control
•  Difficult to impossible for control freaks
•  Window seat inflexible command and control managers

into non-agile, non-critical projects

–  Management facilitates
•  Choose coach style managers
•  Place in Scrum Master or similar roles

–  Management removes road blocks
•  Takes huge courage to remove roadblocks when higher

ups are the cause

© Camille Palmer Bell, 2009 40

General Challenges in Adopting Agility

•  Technical Resistance
–  Expect resistance if mandated from above

•  Find those who want to be agile first
•  Helps if first Agile projects are cool techie attractors
•  Use social pressure - seed agile teams with > 50% pro-agile

–  Senior staff lacking basic technical professionalism
•  e.g. developers who don’t write automated tests are like surgeons

who don’t wash their hands
•  e.g. developers who don’t actively seek learn new technology, skills

and techniques
•  e.g. if they aren’t humble enough to recognize deficiencies and

improve, remove from team

© Camille Palmer Bell, 2009 41

General Challenges in Adopting Agility
•  Technical Resistance (continued)

–  Agile technical practices require discipline, lots of practice
and some social skills

•  Waterfall developers may find the extreme rigor of agile technical
practices like BDD & TDD daunting

•  Practices can slide under pressure, distraction or confusion
– stay vigilant

•  Pair programming helps reinforce practices

–  Learning new skills and technologies takes time
•  Training, coaching and patience helps
•  Pair programming helps spread skills faster

–  Command & control tech leads out

–  Collaborative and coaching leaders emerge
© Camille Palmer Bell, 2009 42

General Challenges in Adopting Agility

•  Technical Staffing Models
–  Pick the right team

•  Even the best process is worthless with bad people

–  Pyramid style staffing (few senior many drones) not a good
fit for Agile

•  Hire fewer, but better techies
•  Use pair programming to raise skill level of entire team

–  Top technical ranks not as well paid
•  Long term adopt dual ladder
•  Short term reward techies with training, perks recognition

© Camille Palmer Bell, 2009 43

Business Consequences of Failing to
Adopt Agility

“It is not necessary to change.
Survival is not mandatory.”

- W. Edwards Deming

© Camille Palmer Bell, 2009 44

What you can do

•  Learn more, be change agent, have courage
•  Usually best to start small to ensure success

– Choose one team of the good open developers
– Choose committed customer
– Choose highly productive agile technology

•  e.g. Ruby on Rails

– Get team training
– Use agile process and technical coaches to ramp

up team
– Use retrospectives to improve
– Repeat and expand

© Camille Palmer Bell, 2009 45

General Web References
Classics
•  http://www.projectsmart.co.uk/docs/chaos-report.pdf

–  A copy of the classic 1995 report on SW project failure by the Standish Group

Agile
•  http://www.agilealliance.org

–  The home of the Agile Alliance, with a great library of Agile articles.
•  http://www.mountaingoatsoftware.com/system/presentation/

file/52/SDWest2007_EUS.pdf
–  Effective User Stories by Mike Cohen

•  http://www.bluecollarobjects.com/pub/Main/Agile2009/
Federal_Bureaucracy-4.pdf

–  A Retrospective: Managing Agile Transition in Government Bureaucracy by Brandon
Raines and Judy Wankerl

© Camille Palmer Bell, 2009 46

Lean Web References

•  http://www.poppendieck.com/
–  Mary and Tom Poppendieck’s home website, excellent material on Lean

•  http://xpday3.xpday.org/slides/LeanTutorial.pdf
–  Overview and Tutorial on Lean by Mary Poppendieck

•  http://leansoftwareengineering.com/
–  Good articles on Lean from multiple authors

•  http://leansoftwareengineering.com/ksse/scrum-ban/
–  Corey Ladas, Scrumban Intro

•  http://leansoftwareengineering.com/2009/06/08/workflow-
patterns/

–  Corey Ladas, author of Scrumban - on kanban workflow

© Camille Palmer Bell, 2009 47

Scrum Web References
•  www.controlchaos.com/

–  Ken Schwaber’s Web site on Scrum.

•  jeffsutherland.com/
–  The codeveloper of Scrum’s Web site. Jeff Sutherland provides various content related

to software programming and technology, particularly objects,
components, and Scrum. Very up-to-date and educational.

•  www.mountaingoatsoftware.com/scrum/
–  Mike Cohn’s great Web site on User Stories, Estimation, Scrum

•  www.scrumalliance.org/
–  The home of the Certified Scrum Masters (caution founders have left)

© Camille Palmer Bell, 2009 48

eXtreme Programming Web References
•  http://www.eXtremeProgramming.org

–  Extreme Programming (XP) home site. The place to start investigating technical agility.
•  http://www.xprogramming.com

–  Ron Jeffries’s Web site about Extreme Programming (XP), also has good articles on
planning and metrics

•  http://butunclebob.com/ArticleS.UncleBob.TheThreeRulesOfTdd/
–  Bob Martin on TDD

•  http://www.extremeprogramming.org/rules/testfirst.html
–  XP and TDD

•  http://www.agiledata.org/essays/tdd.html
–  Scott Ambler’s introduction to TDD

•  http://www.testdriven.com/
–  Test Driven Development Community

•  http://groups.yahoo.com/group/testdrivendevelopment/
–  Test Driven Yahoo Group

•  http://www.objectmentor.com/resources/articles/xpepisode.htm
–  Classic detailed Test First example (uses older Junit)

•  http://blog.daveastels.com/files/BDD_Intro.pdf
–  Behavior Driven Development, an improved TDD

© Camille Palmer Bell, 2009 49

Books
•  "User Stories Applied" by Mike Cohn: ISBN 0-321-20568-5
•  “Lean Software Development: An Agile Toolkit” by Mary and Tom Poppendieck:

ISBN-10: 0321150783
•  “ Implementing Lean Software Development: From Concept to Cash” by Mary

and Tom Poppendieck: ISBN-10 0321437381
•  "Scrumban " by Corey Ladas: ISBN-10: 0578002140

•  "Agile Project Management with Scrum" by Ken Schwaber: ISBN-10: 073561993X
•  “Extreme Programming Explained (second edition)” by Kent Beck and Cynthia

 Andres ISBN 0321278658
•  “Planning Extreme Programming” by Kent Beck and Martin Fowler ISBN

 0201710919
•  "Extreme Programming Installed” by Ron Jeffries, Ann Anderson and Chet

 Hendrickson : ISBN 978-0201708424

•  “Test Driven Development by Example” by Kent Beck ISBN 0321146530
•  “Test-Driven Development: A Practical Guide” by David Astels ISBN

 9780131016491
•  "Refactoring" by Martin Fowler: ISBN 0201485672

•  “Pair Programming Illuminated” by Laurie Williams and Robert Kessler
 ISBN 0-201-74576-3

© Camille Palmer Bell, 2009 50

